Search results for "orbit [binary]"

showing 10 items of 37 documents

Interplay Between Spin-Orbit Coupling and Structural Deformations in Heavy Transition-Metal Oxides with Tetrahedral Coordination

2018

Materials scienceCondensed matter physicsTransition metalTetrahedronGeneral Physics and AstronomySpin–orbit interactionActa Physica Polonica A
researchProduct

Effects of spin-orbit interaction on nuclear response and neutrino mean free path

2006

PTH; The effects of the spin-orbit component of the particle-hole interaction on nuclear response functions and neutrino mean free path are examined. A complete treatment of the full Skyrme interaction in the case of symmetric nuclear matter and pure neutron matter is given. Numerical results for neutron matter are discussed. It is shown that the effects of the spin-orbit interaction remain small, even at momentum transfer larger than the Fermi momentum. The neutrino mean free paths are marginally affected.

Nuclear and High Energy PhysicsParticle physicsresponse functionsNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Mean free pathAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryFOS: Physical sciencesAstrophysics01 natural sciences21.30.Fe 21.60.Jz 21.65.+f 26.60.+cNuclear Theory (nucl-th)Nuclear physicsMomentum[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesNeutronspin-orbit interaction010306 general physicsPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Momentum transferFísicaSpin–orbit interactionNuclear matterNeutron starnuclear matterrandom phase approximationeffective Skyrme interactionsNeutrino
researchProduct

Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors

2013

Despite the great interest organic spintronics has recently attracted, there is only a partial understanding of the fundamental physics behind electron spin relaxation in organic semiconductors. Mechanisms based on hyperfine interaction have been demonstrated, but the role of the spin-orbit interaction remains elusive. Here, we report muon spin spectroscopy and time-resolved photoluminescence measurements on two series of molecular semiconductors in which the strength of the spin-orbit interaction has been systematically modified with a targeted chemical substitution of different atoms at a particular molecular site. We find that the spin-orbit interaction is a significant source of electro…

PhotoluminescenceMaterials scienceGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesSpin-Orbit InteractionHyperfine structureComputingMilieux_MISCELLANEOUSCondensed matter physicsSpintronicsbusiness.industryOrganic SemiconductorRelaxation (NMR)Settore FIS/01 - Fisica SperimentaleSpin–orbit interactionMuon spin spectroscopy021001 nanoscience & nanotechnology0104 chemical sciencesOrganic semiconductorSemiconductorElectron Spin RelaxationCondensed Matter::Strongly Correlated Electrons[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]0210 nano-technologybusiness
researchProduct

Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory.

2014

This work deals with the perturbative treatment of spin-orbit-coupling (SOC) effects within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). We investigate two schemes for constructing the SFX2C-1e SOC matrix: the SFX2C-1e+SOC [der] scheme defines the SOC matrix elements based on SFX2C-1e analytic-derivative theory, hereby treating the SOC integrals as the perturbation; the SFX2C-1e+SOC [fd] scheme takes the difference between the X2C-1e and SFX2C-1e Hamiltonian matrices as the SOC perturbation. Furthermore, a mean-field approach in the SFX2C-1e framework is formulated and implemented to efficiently include two-electron SOC effects. Systematic approximations …

PhysicsComputationGeneral Physics and AstronomyPerturbation (astronomy)Spin–orbit interactionDiatomic moleculeComputer Science::Hardware Architecturesymbols.namesakeMatrix (mathematics)Computational chemistrysymbolsPhysical and Theoretical ChemistryHamiltonian (quantum mechanics)Mathematical physicsThe Journal of chemical physics
researchProduct

Spin-orbit torques from interfacial spin-orbit coupling for various interfaces

2017

We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topologic…

PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMagnetoresistanceSpin polarizationScatteringMagnetismMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesArticleFerromagnetismTopological insulator0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)PerpendicularCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technology
researchProduct

Spin-orbit-coupling induced torque in ballistic domain walls: equivalence of charge-pumping and nonequilibrium magnetization formalisms

2016

To study the effect of spin-orbit coupling (SOC) on spin-transfer torque in magnetic materials, we have implemented two theoretical formalisms that can accommodate SOC. Using the "charge-pumping" formalism, we find two contributions to the out-of-plane spin-transfer torque parameter $\beta$ in ballistic Ni domain walls (DWs). For short DWs, the nonadiabatic reflection of conduction electrons caused by the rapid spatial variation of the exchange potential results in an out-of-plane torque that increases rapidly with decreasing DW length. For long DWs, the Fermi level conduction channel anisotropy that gives rise to an intrinsic DW resistance in the presence of SOC leads to a linear dependenc…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsFermi levelNon-equilibrium thermodynamicsFOS: Physical sciences02 engineering and technologyElectronSpin–orbit interaction021001 nanoscience & nanotechnologyThermal conduction01 natural sciencesMagnetizationsymbols.namesake0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)symbolsTorque010306 general physics0210 nano-technologyAnisotropy
researchProduct

Chaotic Cyclotron and Hall Trajectories Due to Spin-Orbit Coupling

2020

We demonstrate that the synergistic effect of a gauge field, Rashba spin-orbit coupling (SOC), and Zeeman splitting can generate chaotic cyclotron and Hall trajectories of particles. The physical origin of the chaotic behavior is that the SOC produces a spin-dependent (so-called anomalous) contribution to the particle velocity and the presence of Zeeman field reduces the number of integrals of motion. By using analytical and numerical arguments, we study the conditions of chaos emergence and report the dynamics both in the regular and chaotic regimes. {We observe the critical dependence of the dynamic patterns (such as the chaotic regime onset) on small variations in the initial conditions …

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsHall eectCyclotronChaoticGeneral Physics and AstronomyFOS: Physical sciencesLyapunov exponentSpin–orbit interactionchaotic trajectoriesNonlinear Sciences - Chaotic Dynamicslaw.inventionspin-orbit couplingNonlinear Sciences::Chaotic Dynamicssymbols.namesakelawHall effectanomalous velocitiesQuantum electrodynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Lyapunov expo-nentssymbolsChaotic Dynamics (nlin.CD)Annalen der Physik
researchProduct

Understanding the Giant Enhancement of Exchange Interaction in Bi2Se3−EuS Heterostructures

2017

A recent experiment indicated that a ferromagnetic EuS film in contact with a topological insulator ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ might show a largely enhanced Curie temperature and perpendicular magnetic anisotropy [F. Katmis et al., Nature (London) 533, 513 (2016).]. Through systematic density functional calculations, we demonstrate that in addition to the factor that ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ has a strong spin orbit coupling, the topological surface states are crucial to make these unusual behaviors robust as they hybridize with EuS states and extend rather far into the magnetic layers. The magnetic moments of Eu atoms are nevertheless not much enhanced, unlike what was…

PhysicsCondensed matter physicsMagnetic momentExchange interactionGeneral Physics and AstronomyHeterojunction02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesFerromagnetismTopological insulator0103 physical sciencesCurie temperature010306 general physics0210 nano-technologySurface statesPhysical Review Letters
researchProduct

Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods.

2018

A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects using the SFX2C-1e scheme extends the applicability of the perturbative treatment of SOC to molecules that contain heavy elements. The contributions from relaxation of the coupled-cluster amplitudes are shown to be relatively small; significant contributions from correlating the inner-core orbitals are …

PhysicsCoupling010304 chemical physicsRelaxation (NMR)General Physics and AstronomyEquations of motionSpin–orbit interaction010402 general chemistry01 natural sciences0104 chemical sciencesCoupled clusterAtomic orbitalQuantum mechanics0103 physical sciencesPerturbation theory (quantum mechanics)Physical and Theoretical ChemistrySpin-½The Journal of chemical physics
researchProduct

Chaotization of internal motion of excitons in ultrathin layers by spin–orbit coupling

2018

We show that Rashba spin-orbit coupling (SOC) can generate chaotic behavior of excitons in two-dimensional semiconductor structures. To model this chaos, we study a Kepler system with spin-orbit coupling and numerically obtain a transition to chaos at a sufficiently strong coupling. The chaos emerges since the SOC reduces the number of integrals of motion as compared to the number of degrees of freedom. Dynamically, the dependence of the exciton energy on the spin orientation in the presence of SOC produces an anomalous spin-dependent velocity resulting in chaotic motion. We observe numerically the critical dependence of the dynamics on the initial conditions, where the system can return to…

PhysicsCouplingChaoticDegrees of freedom (physics and chemistry)General Physics and AstronomyEquations of motion02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeClassical mechanicsKepler problemOrientation (geometry)0103 physical sciencessymbolsPhysical and Theoretical Chemistry010306 general physics0210 nano-technologySpin-½Physical Chemistry Chemical Physics
researchProduct